

Swift Geospatial

Swift Geospatial

Swift Geospatial and Philip Morris International (PMI) Partnership

- Working together for the past 3 years on assisting PMI with the following sustainability requirements:
 - Site verification/cleaning
 - Deforestation monitoring
 - Landuse change analysis
 - Feedstock site analysis and delineation
 - Forest loss analysis
 - · Proximity analysis for biodiversity
 - Online web-application/dashboard
 - i. Visualize all analysis and imagery
 - ii. Add secondary available datasets
 - 1. Crops
 - 2. IUCN Red List of Threatened Species
 - 3. World Database on Protected Areas
 - 4. Key Biodiversity Areas
 - Area of Interest (AOI)
 - 120,000,000 Ha Globally

Build a sustainability monitoring application to track commitments and provide insights

The Modern Sustainability Challenge

Managing sustainability for a global enterprise like Philip Morris International presents a complex, multifaceted challenge across diverse geographies and contexts.

Cross-Regional Complexity

Operating across diverse geographies, each with unique environmental and socio-economic landscapes, creates varied sustainability challenges.

Vast Supply Chains

Overseeing complex supply chains that span multiple countries and regions requires coordinated sustainability management.

Environmental Impact

Mitigating environmental footprints while maintaining operational efficiency presents a delicate balancing act.

Social Responsibility

Upholding social standards and fostering positive community relations requires contextual understanding of local stakeholders.

Stakeholder Expectations

Meeting diverse expectations from investors, consumers, and regulators regarding sustainability performance.

Ethical Sourcing

Ensuring ethical practices across supply chains while minimizing ecological footprints requires careful management.

What is Geospatial Analysis?

Geospatial analysis is the process of collecting, displaying, and analyzing data linked to specific geographic locations, transforming geographic information into actionable insights.

Data Integration

Combines diverse datasets from various sources to create comprehensive views of geographic areas.

Visualization

Enables deeper understanding of environmental, social, and economic factors through mapping and visualization.

Pattern Recognition

Reveals patterns, relationships, and trends in geographic data that might otherwise go unnoticed.

Specialized Tools

Uses specialized software and tools to interpret geographic information effectively.

Data Collection

Gathering location-based data from various sources

Visualization

Creating maps and visual representations

Analysis

Interpreting patterns and relationships

Insights

Transforming data into actionable knowledge

Using Esri technology allowed for seamless integration from Swift Geospatial to PMI environment

Sources of Geospatial Information

Satellite Imagery

Provides broad-scale, regular monitoring of land use, deforestation, crop health, and environmental changes from space.

Drone Data

Offers high-resolution, localized imagery and data collection for detailed assessments of specific areas, such as farm plots or construction sites.

On-the-Ground GPS Sensors

Delivers precise location data and real-time environmental measurements (e.g., soil moisture, temperature) directly from the field.

Weather Data

Integrates meteorological information to understand climate patterns, predict extreme weather events, and assess their impact on operations and ecosystems.

Population Data

Incorporates demographic information to analyze social impacts, community engagement, and labor practices in specific geographic contexts.

Topographical Data

Provides elevation and terrain information crucial for water management, infrastructure planning, and understanding natural resource distribution.

Sustainable Agriculture Applications

Philip Morris International uses geospatial data to optimize tobacco crop management, enhance sustainability, and improve operational efficiency.

Crop Health Monitoring

Satellite imagery and drone data provide insights into crop health, enabling early detection of issues.

Vegetation Index Analysis

Monitoring NDVI to assess plant vigor and identify areas requiring specific nutrients.

Precision Irrigation

Optimizing irrigation schedules based on real-time conditions to reduce water waste.

Yield Prediction

Understanding crop health to predict yields accurately and ensure sustainable farming.

Water Resource Optimization

Geospatial analysis combined with weather and soil data enables efficient water management across agricultural operations.

Terrain Analysis

Understanding elevation and topography to optimize water distribution and infrastructure planning.

Soil Mapping


Creating detailed soil type maps to understand water retention and irrigation needs.

Climate Integration

Historical rainfall patterns and real-time weather forecasts inform optimal irrigation scheduling.

Key Outcome: Precise irrigation planning reduces water waste while maintaining optimal crop growth conditions.

Environmental Stewardship Through Mapping

Geospatial tools enable proactive environmental protection by mapping sensitive areas and monitoring land use over time.

Mapping "No-Go" Zones

Designating cultivation-prohibited areas to prevent expansion into natural habitats.

Continuous Monitoring

Using satellite imagery to track land-use changes and detect unauthorized deforestation.

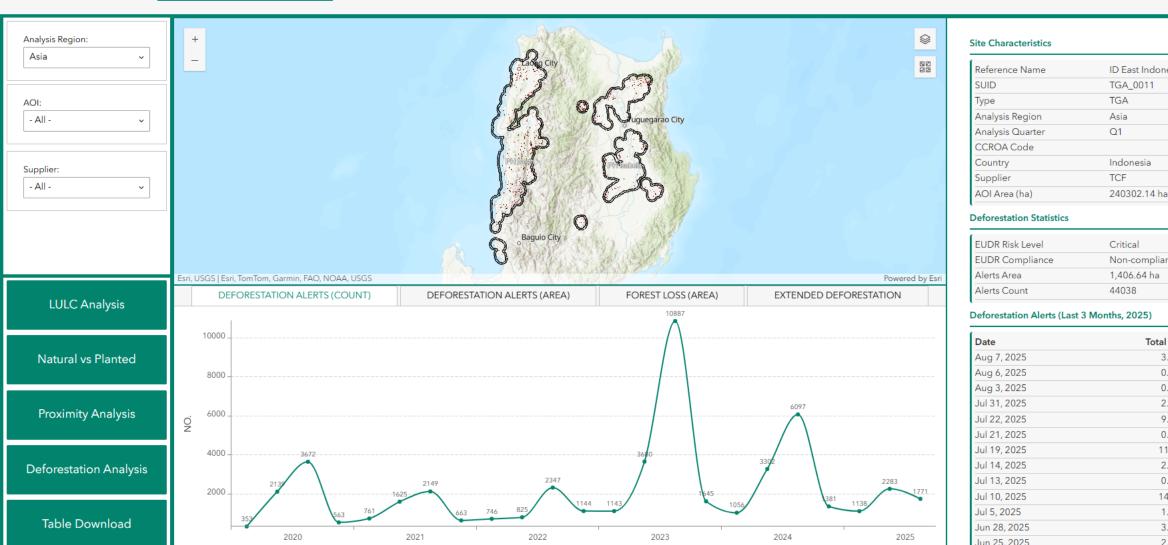
Biodiversity Protection

Preserving ecosystems and supporting conservation through proactive monitoring.

Key Benefits

- Early detection of unauthorized deforestation
- Proactive protection of biodiversity hotspots
- Improved land-use planning

Environmental Stewardship Through Mapping - Deforestation


TOBACCO GROWING AREAS (TGA)

PULP & PAPER FEEDSTOCKS (PPF)

PULP & PAPER MILLS (PPM)

MANUFACTURING FACILITIES (MNF)

SMOKE-FREE PRODUCTS (SFP)

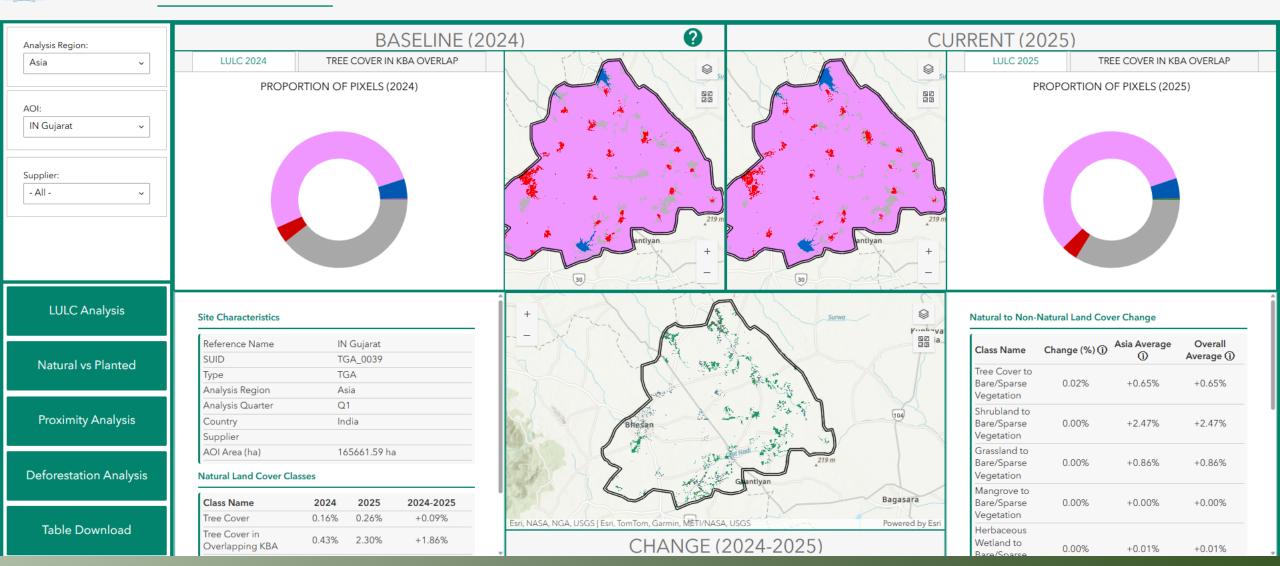
Reference Name	ID East Indonesia
SUID	TGA_0011
Туре	TGA
Analysis Region	Asia
Analysis Quarter	Q1
CCROA Code	
Country	Indonesia
Supplier	TCF
AOI Area (ha)	240302.14 ha

EUDR Risk Level	Critical
EUDR Compliance	Non-compliant
Alerts Area	1,406.64 ha
Alerts Count	44038

Date	Total Area (ha)
Aug 7, 2025	3.62 ha
Aug 6, 2025	0.69 ha
Aug 3, 2025	0.48 ha
Jul 31, 2025	2.51 ha
Jul 22, 2025	9.25 ha
Jul 21, 2025	0.76 ha
Jul 19, 2025	11.52 ha
Jul 14, 2025	2.72 ha
Jul 13, 2025	0.07 ha
Jul 10, 2025	14.93 ha
Jul 5, 2025	1.35 ha
Jun 28, 2025	3.02 ha
Jun 25, 2025	2.46 ha

Environmental Stewardship Through Mapping - Landcover

PHILIP MORRIS Delivering a Smoke-Free Future INTERNATIONAL


TOBACCO GROWING AREAS (TGA)

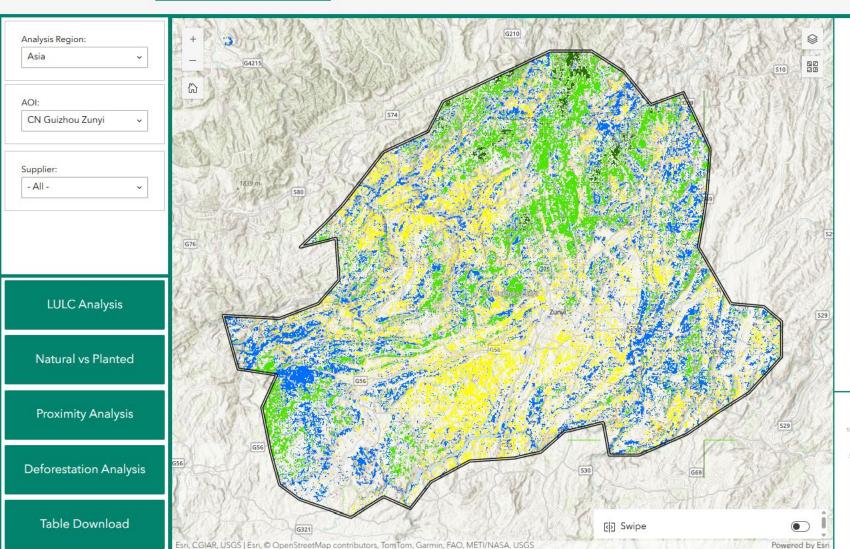
PULP & PAPER FEEDSTOCKS (PPF)

PULP & PAPER MILLS (PPM)

MANUFACTURING FACILITIES (MNF)

SMOKE-FREE PRODUCTS (SFP)

Environmental Stewardship Through Mapping – Planted vs Natural


TOBACCO GROWING AREAS (TGA)

PULP & PAPER FEEDSTOCKS (PPF)

PULP & PAPER MILLS (PPM)

MANUFACTURING FACILITIES (MNF)

SMOKE-FREE PRODUCTS (SFP)

CCROA Code		
Country	Indonesia	
Supplier		
AOI Area (ha)	240302.14 ha	

Forest Area Statistics (2015-2020)

Class	2015	2020	2015-2020
Planted Forest	8,546.11 ha	4,939.56 ha	-3,606.55 ha
Primary Forest	19,292.91 ha	502.84 ha	-18,790.07 ha
Naturally Regenerating Forest	16,743.14 ha	68,445.20 ha	51,702.06 ha
Forest Cover (GFW)	,e	61,193.93 ha	

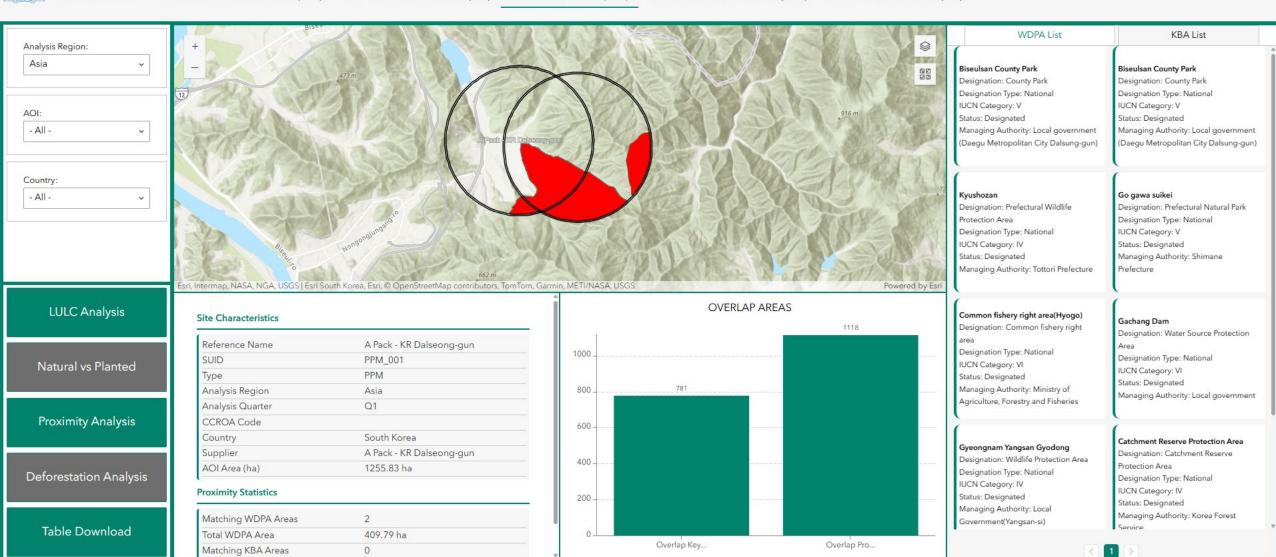
Forest Type Classes (2015)

Class	2015
Naturally Regenerating Forest with Signs of Forest Management	16,743.14 ha
Naturally Regenerating Forest including Primary Forest	19,292.91 ha
Oil Palm Plantation	150.46 ha
Planted Forest	0.00 ha
Plantation Forest	8,546.11 ha
Agroforestry	173,449.14 ha

Environmental Stewardship Through Mapping – Planted vs Natural

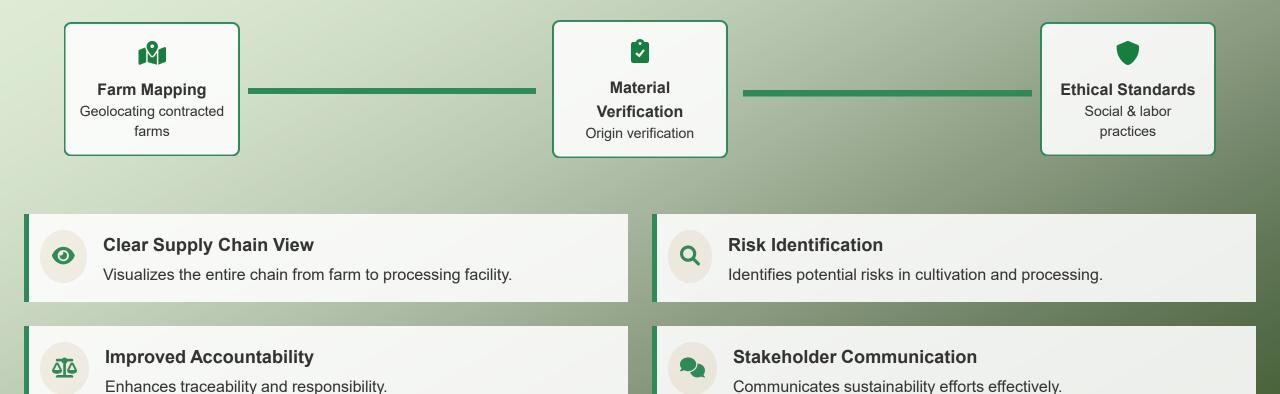
PHILIP MORRIS INTERNATIONAL

. Delivering a Smoke-Free Future


TOBACCO GROWING AREAS (TGA)

PULP & PAPER FEEDSTOCKS (PPF)

PULP & PAPER MILLS (PPM)


MANUFACTURING FACILITIES (MNF)

SMOKE-FREE PRODUCTS (SFP)

Supply Chain Transparency

Geospatial technology enhances supply chain transparency by mapping contracted farms, verifying material origins, and monitoring ethical standards.

Benefits of Geospatial Analysis

Geospatial analysis provides a comprehensive, location-aware understanding of environmental, social, and economic factors, delivering measurable value to sustainability initiatives.

Integrated Data View

Combines diverse datasets to provide a comprehensive understanding of an area or system, revealing patterns and relationships that would be missed in isolated analyses.

Precise Decision-Making

Enables informed decisions through visual representation of data in geographic context, allowing stakeholders to identify trends and patterns at a glance.

Risk Mitigation

Anticipates and addresses environmental and social risks through proactive monitoring and early detection of potential issues, reducing operational disruptions.

Operational Efficiency

Optimizes resource allocation and operational strategies by analyzing how geographic factors impact efficiency, reducing costs while maintaining sustainability goals.

Stakeholder Engagement

Creates meaningful visual narratives that help engage and communicate with stakeholders, improving transparency and trust in sustainability reporting.

Measurable Impact

Transforms abstract sustainability goals into tangible, measurable actions with geographic context, enabling tracking and demonstrating of progress.

The Future of Geospatial Analysis

Geospatial analysis is evolving rapidly with the integration of AI and ML, enhancing predictive capabilities for environmental management.

Data Collection

Al Processing

Predictive Modeling

Actionable Insights

Al-Enhanced Analysis

All can analyze vast satellite imagery datasets to identify subtle land use changes and predict environmental impacts with higher accuracy.

Cloud-Based Platforms

Scalable cloud infrastructure will enable real-time processing of global geospatial data, allowing for more dynamic environmental monitoring.

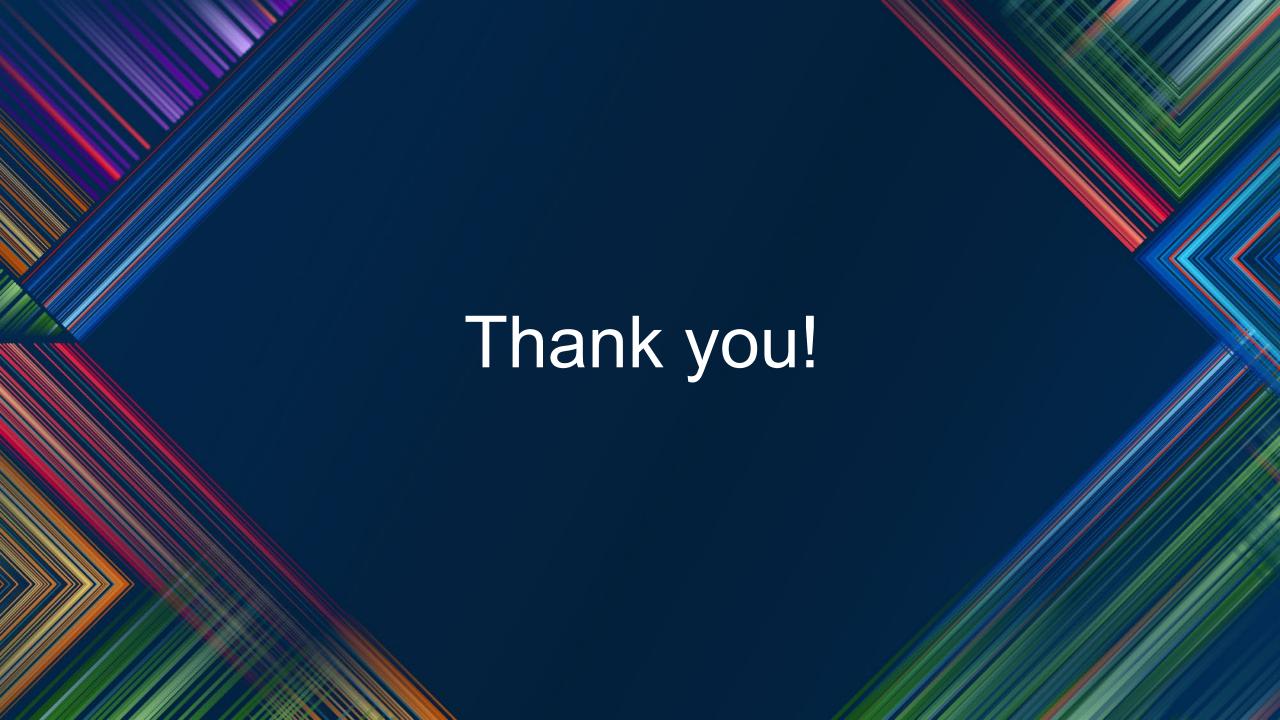
Integrated Modeling

Combining geospatial data with other datasets will create more sophisticated predictive models for environmental risk assessment.

Talent Development

Building skilled talent in geospatial science and data analytics is crucial for realizing the potential of advanced technologies.

Key Challenge


Data accessibility remains a hurdle, as integrating diverse data sources and ensuring quality can be complex. Addressing this requires standardized approaches.

Thank you

Michael Breetzke Swift Geospatial

michael@swiftgeospatial.solutions www.swiftgeospatial.solutions

